On p-almost direct products and residual properties of pure braid groups of nonorientable surfaces
نویسندگان
چکیده
We prove that the nth pure braid group of a nonorientable surface (closed or with boundary, but different from RP2) is residually 2-finite. Consequently, this group is residually nilpotent. The key ingredient in the closed case is the notion of p-almost direct product, which is a generalization of the notion of almost direct product. We prove therefore also some results on lower central series and augmentation ideals of p-almost direct products.
منابع مشابه
The Center of Some Braid Groups and the Farrell Cohomology of Certain Pure Mapping Class Groups
In this paper we first show that many braid groups of low genus surfaces have their centers as direct factors. We then give a description of centralizers and normalizers of prime order elements in pure mapping class groups of surfaces with spherical quotients using automorphism groups of fundamental groups of the quotient surfaces. As an application, we use these to show that the p-primary part...
متن کاملBraid groups of surfaces and one application to a Borsuk Ulam type theorem
During initial lectures we present the full and pure Artin braid groups. We give presentations of these groups and study several of their properties. We compute their centers, de ne a special element called Garside and study its properties. For the pure braid groups, we show how to write them as iterated product of free groups. Then we move on to the study of the full and pure braid groups of s...
متن کاملOrdering Pure Braid Groups on Compact, Connected Surfaces
The purpose of this paper is to answer the following question: Are pure braid groups on compact, connected surfaces bi-orderable? We will prove that the answer is positive for orientable surfaces, and negative for the non-orientable ones. In this section we give the basic definitions and classical results. We also explain what is known about orders on braid groups, and finally we state our resu...
متن کاملOrdering pure braid groups on closed surfaces
We prove that the pure braid groups on closed, orientable surfaces are bi-orderable, and that the pure braid groups on closed, non-orientable surfaces have generalized torsion, thus they are not bi-orderable.
متن کاملIrreducibility of the tensor product of Albeverio's representations of the Braid groups $B_3$ and $B_4$
We consider Albeverio's linear representations of the braid groups $B_3$ and $B_4$. We specialize the indeterminates used in defining these representations to non zero complex numbers. We then consider the tensor products of the representations of $B_3$ and the tensor products of those of $B_4$. We then determine necessary and sufficient conditions that guarantee the irreducibility of th...
متن کامل